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The most popular algorithm for aligning of 3D point data is the Iterative Closest
Point (ICP). The point-to-point variational problem for orthogonal transformations is
mathematically equivalent to the absolute orientation problem in photogrammetry. In this
paper the survey of the known closed form methods to solve point-to-point ICP variation
problem is proposed. Also, the new extension of the Horn algorithm for O(3) group to
SO(3) group is obtained. Computer simulation illustrates the difference of performance
for considered methods.
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Introduction
Creating a 3D spatial environment for a robot or sensor is based on algorithms for

registering point clouds. Aligning two point clouds means finding either an orthogonal or
affine transformation in R3 that maximizes consistent overlap between the two clouds.
The iterative closest points algorithm (ICP) is the most common method for aligning
point clouds based on exclusively geometric characteristics. The algorithm is widely used
to record data obtained with 3D scanners. The ICP algorithm, originally proposed by
Besl and Mackay [1], consists of the following iteratively applied basic steps:

1) a search for a correspondence between the points of two clouds;
2) a minimization of the error metric (variational problem of the ICP algorithm).
The two steps of the ICP algorithm alternate among themselves, that is, the

estimation of the geometric transformation based on the fixed correspondence (step
2) and updating the correspondences to their closest matches (step 1). The key point
of the ICP algorithm [2] is the search for either an orthogonal or affine transformation,
which is the best with respect to a metric for combining two point clouds with a given
correspondence between points.

The variational problem of the ICP algorithm contains the following three basic
components: functional to be minimized; class of geometric transformations; functional
minimization method. The most common types of functional is point-to-point [1].

The point-to-point variational problem for orthogonal transformations is
mathematically equivalent to the absolute orientation problem in photogrammetry [3].
Geometric transformations can belong to the groups of GL(3), O(3), SO(3) (affine
transformations, orthogonal transformations, orthogonal transformations with positive
determinants, respectively) extended by translations. A minimization method can be
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either iterative or closed (closed-form solution). A closed-form solution can be an exact
solution to a variational problem or its approximation. In this paper we consider closed
form solutions of the point-to-point variational problem. Note that the solution to a
variational problem in the class of orthogonal transformations is mathematically more
complicated than in the class of affine transformations, since in the former case it is
necessary to deal with the manifold O(3) (or SO(3)) in R9.

Many different variants of the variational problem have been proposed. In [4] a closed
form solution is described for the point-to-point affine problem.

Closed-form solutions to the point-to-point problem in the class of orthogonal
transformations were obtained by Horn [5; 6]. In [5], the solution is based on quaternions
and belongs to SO(3). In [6], the transformation matrix belongs to O(3) and may have
a negative determinant. In this case, the ICP algorithm does not converge to the true
transformation. This problem was solved by modifying the Horn’s algorithm for the class
of SO(3) in [7].

If the source and target clouds are located far from each other, then a common
algorithm of searching for a correspondence between clouds matches all points of
the source cloud with a small subset of the target cloud. In this case the affine
variational problem finds a transformation that strongly distorts the source cloud. Also
the bad correspondence significantly reduces the probability to obtain a good answer
for orthogonal variants of variational problems. Thus, the probability of obtaining
an acceptable transformation as a result of the ICP algorithm with an initial poor
correspondence is the comparative criterion for different types of variational problems.

In this paper a survey of methods to solve the point-to-point variation problem
(or the absolute orientation problem) for different cases is proposed. We consider the
following types of the point-to-point variational problem:

1) a closed form solution of the affine point-to-point [4];
2) an approximation of the exact orthogonal solution by a projection of the affine

solution onto O(3) [6];
3) an approximation of the exact orthogonal solution by SVD of the affine solution;
4) a closed form exact solution (O(3) case) [6];
5) a closed form exact solution (O(3) case, SVD) [7];
6) a closed form exact solution (SO(3) case);
7) an approximation of the exact orthogonal solution by a projection of the affine

solution onto SO(3) [7].
Note that all the considered algorithms are known, except for the algorithm described

in Section 5.1.
Especially note that the method described in Section 3.3 is used in numerous papers

in the point cloud registration field and it returns the solution belongs to O(3) (not
SO(3)) group.

The paper is organized as follows. In Section 1, we formulate the point-to-point
variational problem. In Section 2, the problem is reduced to the form without the
translation vector. In Section 3, we consider algorithms for O(3) group, in Section 4
for GL(3) group, in Section 5 for SO(3) group. In Section 6, the list of considered
variational problems and methods to their solutions is proposed. In Section 7, computer
simulation results are presented and discussed.

1. Absolute orientation problem
Let P = {p1, . . . , ps} be a source point cloud, and Q = {q1, . . . , qs} be a target point

cloud in R3. Suppose that the relation between points of P and Q is given in such a
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manner that for each point pi there is a corresponding point qi. Note that a point qi
from Q can correspond to the several points from P . Denote by J the functional

J(R, T ) =
s∑
i=1

‖Rpi + T − qi‖2, (1)

where R is an orthogonal matrix belongs to O(3) or SO(3) group, pi = (pi1 pi2 pi3)t,
qi = (qi1 qi2 qi3)t. Consider the following constrained variational problem:

(R∗, T∗) = arg min
R,T

J(R, T ), (2)

subject that RtR = I (O(3) case), or subject that RtR = I and det(R) = 1 (SO(3) case).
The variational problem (2) is called absolute orientation problem or point-to-point ICP
variational problem.

2. Translation vector exclusion
Let us compute the gradient J(R, T ) with respect to T . Let h be the increment with

respect to T . Note that

J(R, T ) =
s∑
i=1

‖Rpi + T − qi‖2 =
s∑
i=1

〈Rpi + T − qi, Rpi + T − qi〉 =

=
s∑
i=1

〈Rpi − qi, Rpi − qi〉+ 2〈Rpi − qi, T 〉+ 〈T, T 〉,

J(R, T + h) =

=
s∑
i=1

‖Rpi + (T + h)− qi‖2 =
s∑
i=1

〈Rpi + (T + h)− qi, Rpi + (T + h)− qi〉 =

=
s∑
i=1

〈Rpi − qi, Rpi − qi〉+ 2〈Rpi − qi, (T + h)〉+ 〈(T + h), (T + h)〉 =

=
s∑
i=1

〈Rpi − qi, Rpi − qi〉+ 2〈Rpi − qi, T 〉+ 2〈Rpi − qi, h〉+ 〈T, T 〉+ 2〈T, h〉+ 〈h, h〉.

The residual of J(R, T + h) and J(R, T ) is

J(R, T + h)− J(R, T ) =
s∑
i=1

2〈Rpi − qi, h〉+ 2〈T, h > +〈h, h〉 =

=
s∑
i=1

〈2(T + (Rpi − qi)), h〉+ 〈h, h〉 = 〈2
s∑
i=1

(T + (Rpi − qi)), h〉+ o(h). (3)

It follows from (3) that gradient ∇J(T ) is

∇J(T ) = 2
s∑
i=1

T + (Rpi − qi).

Let us compute the extreme value of the variable T : ∇J(T ) = 0,

T∗ =
1

s

s∑
i=1

qi −Rpi. (4)
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We substitute the expression T∗ through R into (1):

J(R, T∗) =
s∑
i=1

‖Rpi + T∗ − qi‖2 =
s∑
i=1

∥∥∥∥∥Rpi +

(
1

s

s∑
j=1

qj −Rpj

)
− qi

∥∥∥∥∥
2

=

=
s∑
i=1

∥∥∥∥∥
(
Rpi −

1

s

s∑
j=1

Rpj

)
−

(
qi −

1

s

s∑
j=1

qj

)∥∥∥∥∥
2

=

=
s∑
i=1

∥∥∥∥∥R
(
pi −

1

s

s∑
j=1

pj

)
−

(
qi −

1

s

s∑
j=1

qj

)∥∥∥∥∥
2

. (5)

Let p′i and q′i be

p′i = pi −
1

s

s∑
j=1

pj, q′i = qi −
1

s

s∑
j=1

pj, (6)

where i = 1, 2, . . . , s. The functional (1) with respect to (5) and (6) takes the form

J(R) =
s∑
i=1

‖Rp′i − q′i‖2. (7)

The variational problem (2) for point clouds P ′ = {p′1, . . . , p′s} and Q′ = {q′1, . . . , q′s} is
reduced to

R∗ = arg min
R
J(R), (8)

subject that RtR = I (O(3) case), or subject that RtR = I and det(R) = 1 (SO(3)
case). Denote by P’ and Q’ the following matrices:

P’ =

 p′11 . . . p′s1
p′12 . . . p′s2
p′13 . . . p′s3

 , Q’ =

 q′11 . . . q′s1
q′12 . . . q′s2
q′13 . . . q′s3

 . (9)

Note that the functional (7) can be rewritten as

J(R) = ‖RP’−Q’‖2. (10)

3. Algorithms for O(3) group
3.1. Horn algorithm for matrices

Let us consider variational problem (8) with functional in form (10). Note that we
denote by 〈A,B〉 (where A and B are same size matrices) the matrix dot product, i. e.
the sum of pointwise products of matrices elements.

s∑
i=1

‖Rp′i − q′i‖2 = ‖RP’−Q’‖2 = 〈RP’−Q’, RP’−Q’〉 =

= 〈RP’, RP’〉 − 2〈RP’,Q’〉+ 〈Q’,Q’〉 = 〈RtRP’,P’〉 − 2〈RP’,Q’〉+ 〈Q’,Q’〉 =

= 〈P’,P’〉 − 2〈RP’,Q’〉+ 〈Q’,Q’〉 = 〈P’,P’〉 − 2〈R,Q’(P’)t〉+ 〈Q’,Q’〉.

Let us denote by M the matrix

M = Q’(P’)t. (11)
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Note that M t is the covariance matrix of point clouds P’ and Q’. Since 〈P’,P’〉 and
〈Q’,Q’〉 are constants with respect to the variational problem, problem (8) is reduced
to

R∗ = arg min
R

(−〈R,M〉) = arg max
R
〈R,M〉. (12)

Let us consider the matrix M tM . This matrix is symmetric and positive semi-definite.
Suppose that rank(M) = 3 (matrix M is the sum of matrices of rank one). Since
rank(M tM) = rank(M), we have that rank M tM is equal to three. Thus, three
eigenvalues of the matrix M tM are strictly greater than zero. Let us write eigen
decomposition of the matrix M tM

M tM = <Λ<t, (13)

where < is an orthogonal matrix consists of the eigenvectors, λ1, λ2, λ3 are eigenvalues
and Λ = diag(λ1, λ2, λ3) . Suppose that λ1 ≥ λ2 ≥ λ3.

Proposition 1. The matrix S = (M tM)1/2 can be expressed as

S = (M tM)1/2 = <
√

Λ<t, (14)

where
√

Λ = diag(
√
λ1,
√
λ2,
√
λ3). The matrix S = (M tM)1/2 is symmetric.

Proof. We have

(<
√

Λ<t)(<
√

Λ<t) = <
√

Λ
√

Λ<t = <Λ<t = M tM,

(M tM)t = (<Λ<t)t = <(Λ)t<t = <Λ<t = M tM.

2

Proposition 2. The matrix U = M(M tM)−1/2 can be expressed as

U = M(M tM)−1/2 = M<(
√

Λ)−1<t, (15)

where (
√

Λ)−1 = diag( 1√
λ1
, 1√

λ2
, 1√

λ3
). The matrix U = M(M tM)−1/2 is orthogonal.

Proof. We have the equalities

((M tM)−1/2(M tM)−1/2)−1 = ((<(
√

Λ)−1<t)(<(
√

Λ)−1<t))−1 =

= (<(
√

Λ)−1(
√

Λ)−1<t)−1 = ((<Λ−1<t))−1 = <Λ<t = M tM,

U tU = (M<(
√

Λ)−1<t)tM<(
√

Λ)−1<t = (<(
√

Λ)−1<tM t)M<(
√

Λ)−1<t =

= <(
√

Λ)−1<t(M tM)<(
√

Λ)−1<t = <(
√

Λ)−1<t(<Λ<t)<(
√

Λ)−1<t =

= <(
√

Λ)−1Λ(
√

Λ)−1<t = <<t = I.

2

Proposition 3. The equality

M = US (16)

is valid.
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Proof. It is obvious that US = M(M tM)−1/2(M tM)1/2 = M . Substitute (16) to the
functional in variational problem (12) and obtain

R∗ = arg max
R
〈R,M〉 = arg max

R
〈R,US〉 = arg max

R
〈U tR, S〉 =

arg max
R
〈U tR,<

√
Λ<t〉 = arg max

R
〈<tU tR<,

√
Λ〉,

subject that RtR = I.
The matrix <tU tR< is orthogonal. Let us denote the diagonal elements of this matrix

by r1, r2, r3. In this case the dot product can be written as

〈<tU tR<,
√

Λ〉 = r1

√
λ1 + r2

√
λ2 + r3

√
λ3.

Maximum value of dot product of an orthogonal matrix and the matrix
√

Λ is equal to√
λ1 +

√
λ2 +

√
λ3, i. e r1 = 1, r2 = 1, r3 = 1 and <tU tR< = I.

Therefore, we have that

R = U = M(M tM)−1/2. (17)

2

3.2. Nearest orthogonal matrix (O(3) case)

Let us denote by M a 3 × 3 matrix, rank(M) = 3. We call a nearest orthogonal
matrix for the matrix M such matrix R∗, that

R∗ = arg min
R
‖R−M‖2, (18)

subject that RtR = I. We rewrite the functional in variational problem (18) as

‖R−M‖2 = 〈R−M,R−M〉 = 〈R,R〉 − 2〈R,M〉+ 〈M,M〉 =

= 〈RtR, I〉 − 2〈R,M〉+ 〈M,M〉 = 〈I, I〉 − 2〈R,M〉+ 〈M,M〉. (19)

Since terms 〈I, I〉 and 〈M,M〉 are constant with respect to variational problem (19),
the variational problem takes the form

R∗ = arg max
R
〈R,M〉, (20)

subject that RtR = I.
Variational problems (20) and (12) are coincide. Therefore, the nearest orthogonal

matrix R for the the matrix M is

R = M(M tM)−1/2. (21)

3.3. Solution of the variational problem by Singular Value Decomposition

Let M be a 3 × 3 matrix and rank(M) = 3. Let us apply Singular Value
Decomposition (SVD) to the matrix M = UDVt, where U and Vt are orthogonal
matrices, D = diag(

√
λ1,
√
λ2,
√
λ3) and λ1, λ2, λ3 > 0 are eigenvalues of the matrix

M tM .
Formula (21) describes the solution of variational problem (12). Substitute SVD of

the matrix M to (21) and get

R = M(M tM)−1/2 = (UDVt)((UDVt)t(UDVt))−1/2 =

= (UDVt)(VDUtUDVt)−1/2 = (UDVt)(VD2Vt)−1/2.

Челябинский физико-математический журнал.Том 1, выпуск 1.



Algorithms to solve absolute orientation problem for GL(3), O(3) and SO(3) groups 103

Since ((VD−1Vt)(VD−1Vt))−1 = (VD−2Vt)−1 = VD2Vt, we have that

(UDVt)(VD2Vt)−1/2 = (UDVt)(VD−1Vt) = UVt,

and

R = M(M tM)−1/2 = UVt. (22)

Remark 1. The sign of the matrix R determinant in (22) is defined by the sign of the
matrix M determinant

det(R) = det(M(M tM)−1/2) = det(M<(
√

Λ)−1)<t) =

= det(M) det(<) det((
√

Λ)−1)) det(<t) = det(UVt),

where the matrices < and (
√

Λ)−1 are defined in (13) and (15), also note that det(<) =
det(<t) > 0 and det((

√
Λ)−1)) > 0.

If the condition det(M) = det(Q’(P’)t) < 0 holds (we use here (11)), then we have
that det(R) = −1.

Remark 2. If on an iteration of ICP algorithm we obtain a geometrical transformation
with det(R) = −1, then ICP practically can not to converge to the right solution,
because we have in this situation clouds RP and Q that can not be aligned by rotations
and translations.

4. Algorithms for GL(3) group
4.1. Solution for GL(3)

Here we consider variational problem (8) with functional in form (10). We will
interpret here the matrix R as matrix of an affine transformation. Let us denote this
matrix as Ra. Rewrite the considered functional by the following way:

J(Ra) = ‖RaP’−Q’‖2 = 〈RaP’−Q’, RaP’−Q’〉 =

= 〈RaP’, RaP’〉 − 2〈RaP’,Q’〉+ 〈Q’,Q’〉.

Let us denote by h the increment with respect to Ra. The increment of the functional
takes the form

J(Ra + h) = 〈(Ra + h)P’−Q’, (Ra + h)P’−Q’〉 =

= 〈(Ra + h)P’, (Ra + h)P’〉 − 2〈(Ra + h)P’,Q’〉+ 〈Q’,Q’〉 =

= 〈RaP’, RaP’〉+ 2〈RaP’, hP’〉+ 〈hP’, hP’〉 − 2〈RaP’,Q’〉 − 2〈hP’,Q’〉+ 〈Q’,Q’〉.

We consider the difference

J(Ra + h)− J(Ra) = 2〈RaP’, hP’〉+ 〈hP’, hP’〉 − 2〈hP’,Q’〉 =

= 2〈RaP’−Q’, hP’〉+ 〈hP’, hP’〉 = 2〈(RaP’−Q’)(P’)t, h〉+ 〈hP’, hP’〉.

Thus, the gradient∇J(Ra) is∇J(Ra) = 2(RaP’−Q’)(P’)t, and the equation∇J(Ra) =
0 takes the form (RaP’−Q’)(P’)t = 0, RaP’(P’)t −Q’(P’)t = 0, and

Ra = (Q’(P’)t)(P’(P’)t)−1. (23)
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4.2. Projection of affine solution to O(3)

We can obtain an approximated orthogonal solution R = Ra(R
t
aRa)

−1/2 of the
variational problem (12) by applying affine solution (23). The matrix R is projection of
Ra to O(3) by formula (21).

5. Algorithms for SO(3) group
It follows from Remark 2 that eliminating the possibility of obtaining an orthogonal

matrix with a negative determinant increases the convergence of ICP to true geometric
transformations. Therefore, the algorithms to solve variation problem (12) in the SO(3)
class have better performance than algorithms for O(3).

5.1. Modified Horn algorithm for SO(3) case

Consider the following variational problem:

R∗ = arg max
R
〈R,M〉, (24)

subject that RtR = I and det(R) = 1. Denote by sgn det the sign of a
matrix determinant. Note that sgn det(R) = sgn det(U) = sgn det(M(M tM)−1/2) =
sgn det(M). If sgn det(M) = 1, then the solution R = U belongs to SO(3).

Suppose that sgn det(M) = −1. Since M = US and S = (M tM)1/2 (formulas (16)
and (14)) we have

〈R,M〉 = 〈R,US〉 = 〈U tR, S〉 = 〈U tR, (M tM)1/2〉 = 〈U tR,<
√

Λ<t〉 = 〈<tU tR<,
√

Λ〉.

The matrix <tU tR< is orthogonal and sgn det(<tU tR<) = sgn det(U) = sgn det(M) =
−1. Note that any element Ro of the group O(3) can be represented as Ro = RsE,
where Rs is an element of SO(3) and E = diag(±1,±1,±1). Particularly, we have that
<tU tR< = RsEi, where i = 1, 2, 3, 4 and E1 = diag(1, 1,−1), E2 = diag(−1,−1,−1),
E3 = diag(−1, 1, 1), E4 = diag(1,−1, 1).

Note that any rotation in R3 can be represented by a value α of the rotation angle,
and a rotation axis. The rotation axis contains the origin of the coordinates system and
is defined by a direction vector v = (x, y, z). We suppose that ‖v‖ = 1. The matrix Rs

can be written as

Rs =

 cosα + x2(1− cosα) xy(1− cosα)− z sinα xz(1− cosα) + y sinα
xy(1− cosα) + z sinα cosα + y2(1− cosα) zy(1− cosα)− x sinα
zx(1− cosα)− y sinα zy(1− cosα) + x sinα cosα + z2(1− cosα)

 .

Proposition 4. For any matrix Rs from SO(3) the following condition holds (recall
that λ1 ≥ λ2 ≥ λ3 > 0) :

〈RsE1,
√

Λ〉 ≤
√
λ1 +

√
λ2 −

√
λ3. (25)

Proof. Let us rewrite (25) as
√
λ1 +

√
λ2 −

√
λ3− < RsE1,

√
Λ ≥ 0. Since

〈RsE1,
√

Λ〉 = (cosα + x2(1− cosα))
√
λ1 +

+(cosα + y2(1− cosα))
√
λ2 − (cosα + z2(1− cosα))

√
λ3 =

= cosα(
√
λ1 +

√
λ2 −

√
λ3) + (1− cosα)(

√
λ1x

2 +
√
λ2y

2 −
√
λ3z

2),
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we have that √
λ1 +

√
λ2 −

√
λ3 −

−(cosα(
√
λ1 +

√
λ2 −

√
λ3)− (1− cosα)(

√
λ1x

2 +
√
λ2y

2 −
√
λ3z

2)) =

= (1− cosα)(
√
λ1 +

√
λ2 −

√
λ3)− (1− cosα)(

√
λ1x

2 +
√
λ2y

2 −
√
λ3z

2) =

= (1− cosα)(
√
λ1(1− x2) +

√
λ2(1− y2) +

√
λ3(z2 − 1))

Note that (1−cosα) ≥ 0, (1−x2) ≥ 0, (1−y2) ≥ 0 and (z2−1) ≤ 0, since x2+y2+z2 = 1,
and also

√
λ1 ≥

√
λ2 ≥

√
λ3. It follows that√

λ1(1− x2) +
√
λ2(1− y2) +

√
λ3(z2 − 1) ≥

≥
√
λ2(1− x2) +

√
λ2(1− y2) +

√
λ3(z2 − 1) =

=
√
λ2(2− (x2 + y2)) +

√
λ3(z2 − 1) ≥ 0.

2

Consider the following inequalities 〈RsEi,
√

Λ〉 ≤
√
λ1+
√
λ2−
√
λ3, where i = 2, 3, 4.

Denote by Eaux2, Eaux3 and Eaux4 the following matrices:

Eaux2 = diag(−1,−1, 1), Eaux3 = diag(−1, 1,−1), Eaux4 = diag(1,−1,−1).

Note that sgn det(Eaux2) = sgn det(Eaux3) = sgn det(Eaux4) = 1 and

Eaux2E1 = E2, Eaux3E1 = E3, Eaux4E1 = E4.

Note that it is possible represent the expression 〈RsEi,
√

Λ〉 in the form

〈RsEi,
√

Λ〉 = 〈(RsEauxi)E1,
√

Λ〉, i = 2, 3, 4.

The matrix RsEauxi is an element of SO(3). It follows that the following conditions
holds: 〈RsEi,

√
Λ〉 ≤ 〈E1,

√
Λ〉, where i = 1, 2, 3, 4. In such a way, the dot product takes

maximum value when Ro = E1, and

<tU tR< = E1. (26)

Let us express R from equation (26): R = U<E1<t. Note that if sgn det(U) = −1,
then sgn det(R) = 1. So, we obtain that R = U<E1<t. The solution of the variational
problem (12) for SO(3) is

R =

{
M(M tM)−1/2, if sgn det(M) = 1,

M(M tM)−1/2 < diag(1, 1,−1) <t, if sgn det(M) = −1,
(27)

where < is the matrix consisting of eigenvectors of the matrix M tM and eigenvalues of
M tM ordered in the descending order.

5.2. Algorithm for SO(3) based on Lagrange multipliers

Let us consider here variational problem (24). The constrained variational problem
(24) can be reformulated as unconstrained problem by applying Lagrange multipliers
(R∗, C∗, λ∗) = arg max

R,C,λ
J(R,C, λ), where

J(R,C, λ) = 〈R,M〉 − 〈C,RtR− I〉 − λ(det(R)− 1),
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and C is a symmetric matrix of Lagrange coefficients, the number λ is the Lagrange
coefficient. Let us denote J1 = 〈R,M〉, J2 = 〈C,RtR− I〉 and J3 = λ(det(R)− 1), then

J(R,C, λ) = J1(R,C, λ)− J2(R,C, λ)− J3(R,C, λ).

Let us compute the gradient∇J(R) with respect toR. The gradient∇J1 is∇J1(R) = M.
Compute the gradient ∇J2(R). J2(R,C, λ) = 〈C,RtR − I〉 = 〈C,RtR〉 − 〈C, I〉. Let us
denote by h the increment with respect to R, then

J2(R + h,C, λ) = 〈C, ((R + h)t(R + h)− I)〉 = 〈C, (R + h)t(R + h)〉 − 〈C, I〉,

〈C, (R + h)t(R + h)〉 = 〈C, (Rt + ht)(R + h)〉 = 〈C,RtR +Rth+ htR + hth〉 =

〈C,RtR +Rth+ htR + hth〉 = 〈C,RtR〉+ 〈C,Rth〉+ 〈C, htR〉+ 〈C, hth〉,

J2(R + h,C, λ)− J(R,C, λ) = 〈C,Rth〉+ < C, htR〉+ o(h),

〈C,Rth〉+ < C, htR〉 = 〈RC, h〉+ 〈C, htR〉 = 〈RC, h〉+ 〈I, htRCt〉 =

= 〈RC, h〉+ 〈h,RCt〉 = 〈RC +RCt, h〉 = 〈2RC, h〉.

We have that ∇J2(R) = 2RC. Compute the gradient ∇J3(R).

Proposition 5. Let R be 3× 3 orthogonal matrix, then

∂ det(R)

∂R
= R.

Proof. We have that

det(R) = det

 r11 r12 r13

r21 r22 r23

r31 r32 r33

 =

r11(r22r33 − r23r32)− r12(r21r33 − r23r31) + r13(r21r32 − r22r31) =

r11r22r33 − r11r23r32 − r12r21r33 + r12r23r31 + r13r21r32 − r13r22r31,

∂ det(R)

∂R
=


∂ det(R)
∂r11

∂ det(R)
∂r12

∂ det(R)
∂r13

∂ det(R)
∂r21

∂ det(R)
∂r22

∂ det(R)
∂r23

∂ det(R)
∂r31

∂ det(R)
∂r32

∂ det(R)
∂r33

 =

 r22r33 − r23r32 −r21r33 + r23r31 r21r32 − r22r31

−r12r33 + r13r32 r11r33 − r13r31 −r11r32 + r12r31

r12r23 − r13r22 −r11r23 + r13r21 r11r22 − r12r21

 ,

R−1 =
1

det(R)

 r22r33 − r23r32 −r12r33 + r13r32 r12r23 − r13r22

−r21r33 + r23r31 r11r33 − r13r31 −r11r23 + r13r21

r21r32 − r22r31 r11r32 + r12r31 r11r22 − r12r21

 ,

R−1 =

(
∂ det(R)

∂R

)t
, R =

∂ det(R)

∂R
.

2
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So, we obtain that

∇J(R) = ∇J1(R)−∇J2(R)−∇J3(R) = M − 2RC − λR = M − 2RC −Rλm,
where λm = diag(λ, λ, λ). We are looking for such orthogonal matrix R with postive
determinant that ∇J(R) = M − 2RC −Rλm = 0,

R(2C + λm) = M. (28)

Note that 2C + λm and (2C + λm)−1 are symmetric matrices. Consider the transposed
equation for (28)

(2C + λm)tRt = M t. (29)

We multiply each side of (29) with each side of (28) and obtain

(2C + λm)tRtR(2C + λm) = M tM,

(2C + λm)2 = M tM,

(2C + λm) = <
√

ΛS<t,
where S = diag(s1, s2, s3), si = 1 or si = −1, i = 1, 2, 3, and

(2C + λm)−1 = <(
√

Λ)−1S<t.
It follows from (28) that R = M(2C + λm)−1 = M<(

√
Λ)−1S<t,

〈R,M〉 = 〈M<(
√

Λ)−1S<t,M〉 = 〈<(
√

Λ)−1S<t,M tM〉 =

= 〈<(
√

Λ)−1S<t,<Λ<t〉 = 〈(
√

Λ)−1S,Λ〉 = 〈S, (
√

Λ)−1Λ〉 = 〈S, (
√

Λ)〉.
Note that sgn det(R) = sgn det(M) sgn det(S). If sgn det(M) = 1, then we obtain that
sgn det(S) = 1 and maximum value of the expression 〈R,M〉 = 〈S,

√
Λ〉 can be reached,

when 〈R,M〉 = 〈S,
√

Λ〉 =
√
λ1 +

√
λ2 +

√
λ3, i. e. S = I.

If sgn det(M) = −1 then we obtain that sgn det(S) = −1 and maximum value of
the expression 〈R,M〉 = 〈S, (

√
Λ)〉 can be reached, when

〈R,M〉 = 〈S,
√

Λ〉 =
√
λ1 +

√
λ2 −

√
λ3,

i. e. S = diag(1, 1,−1).
The solution of variational problem (12) for SO(3) takes the form

R =

{
M<(

√
Λ)−1<t, if sgn det(M) = 1,

M<(
√

Λ)−1diag(1, 1,−1)<t, if sgn det(M) = −1,
={

M(M tM)−1/2, if sgn det(M) = 1,

M(M tM)−1/2 < diag(1, 1,−1) <t, if sgn det(M) = −1,

where < is the matrix consists of eigenvectors of the matrix M tM and eigenvalues of
M tM ordered in the descending order.

Remark 3. Let us consider the singular value decomposition (SVD) of the matrix
M = UDVt, where U and Vt are orthogonal matrices, D is a diagonal matrix. Since

M tM = VDUtUDVt = VD2Vt = <Λ<t,
we obtain that V = < and D2 = Λ. Note that M<(

√
Λ)−1<t = UDVtVD−1Vt =

UVt, M<(
√

Λ)−1diag(1, 1,−1)<t = UDVtVD−1diag(1, 1,−1)Vt = U diag(1, 1,−1)Vt.
So, the solution of the variation problem can be written as

R =

{
UVt, if sgn det(U) = sgn det(V),

U diag(1, 1,−1)Vt, if sgn det(U) 6= sgn det(V).
(30)
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5.3. Nearest orthogonal matrix (SO(3) case)

Let us denote by M a 3 × 3 matrix, rank(M) = 3. We call a nearest orthogonal
matrix for the matrix M a matrix R∗, such that R∗ = arg min

R
‖R −M‖2, subject that

RtR = I and det(R) = 1. By analogy with the item 3.2 we obtain that the variational
problem takes the form

R∗ = arg max
R
〈R,M〉, (31)

subject that RtR = I and det(R) = 1. Therefore, the nearest orthogonal matrix R for
the the matrix M can be computed by (30), where M = UDVt.

5.4. Projection of affine solution to SO(3)

We can obtain an approximated orthogonal solution R of variational problem (12)
by applying the affine solution (23) in (30), where Ra = UDVt. The matrix R is the
projection of Ra to SO(3) by formula (30).

6. List of types of variational problems
The approaches described above allow us to solve the following variants of variation

problem (2). The input data for all algorithms are the point clouds P and Q, the output
data are the matrix R and the vector T . The matrices P’ and Q’ are described in (9).

6.1. Affine point-to-point

A closed form solution of variation problem (2) in this case is given by formula (23)
for the matrix R and by formula (4) for the vector T .

6.2. Approximation of the exact orthogonal solution
by projection of the affine solution onto O(3)

A closed form solution of (2) in this case is given by formula (23) (affine solution)
and by formula (21) (projection onto O(3)) for the matrix R and by (4) for the vector T .

6.3. Approximation of the exact orthogonal solution by SVD
of the affine solution

A closed form solution of variation problem (2) in this case is given by (23) (affine
solution) and by formula (22) (SVD of the matrix Ra) for the matrix R and by formula
(4) for the vector T .

The algorithms described in items 6.2 and 6.3 are equivalent.

6.4. Closed form exact solution (O(3) case)

A closed form solution of variation problem (2) in this case is given by formula (17)
for the matrix R and by formula (4) for the vector T .

6.5. Closed form exact solution (O(3) case, SVD)

A closed form solution of variation problem (2) in this case is given by formula (22)
for the matrix R and by formula (4) for the vector T .

The algorithms described in items 6.4 and 6.5 are equivalent.
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6.6. Closed form exact solution (SO(3) case)

A closed form solution of problem (2) in this case is given by formula (27) or (30)
for the matrix R and by formula (4) for the vector T .

6.7. Approximation of the exact orthogonal solution
by projection of the affine solution onto SO(3)

A closed form solution of variation problem (2) in this case is given by formula (23)
(affine solution) and by formulas (31) or (30) (projection onto SO(3)) for the matrix R
and by formula (4) for the vector T .

7. Experimental comparison of some considered algorithms

We compare here the algorithms described in items 6.6 and 6.7. The ICP algorithm
based on a closed form exact solution for SO(3) is denoted as PtP_es, the ICP algorithm
based on the approximation of the exact orthogonal solution by projection of the affine
solution onto SO(3) is denoted as PtP_pr. We compare these algorithms in terms of
the convergence rate (i.e. the frequency of convergence of ICP algorithm to a correct
solution).

The algorithms PtP_es and PtP_pr use the standard method for searching the
correspondence between clouds based on k-d tree. Our experiments are organized as
follows. An orthogonal geometric transformation given by a known matrix is applied to
a source point cloud. The source and transformed clouds are input to a tested algorithm.
The ICP algorithm converges if the reconstructed transformation matrix coincides with
the original matrix with a given accuracy.
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Fig. 1. Convergence rate for Stanford Bunny
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Fig. 2. Convergence rate for Stanford Armadillo

In the experiments, we use two following point clouds: Stanford Bunny and Stanford
Armadillo. The Stanford Bunny and Stanford Armadillo clouds consist of 1024 points.
All points lie in a centered unit sphere. The statistical experiments are organized
as follows. Let us fix the value of the rotation angle. We take a random, uniformly
distributed direction vector that defines a line containing the origin of the coordinate
system. This line is the axis of rotation at a fixed angle. In addition, the components of
the translation vector are a random variable uniformly distributed in the interval (0, 1).
The synthesized geometric transformation matrix (true matrix Mtrue) is applied to the
source cloud P . The tested algorithms are applied to the clouds P and Q. We say that
the registration algorithm converges to true data, if the reconstructed transformation
matrix Mest coincides with the original matrix with a given accuracy. To guarantee
statistically correct results, 1000 trials for each fixed rotation angle are carried out. The
rotation angle varies from 0 to 90 degrees with a step of 10 degrees.

Fig. 1 shows the convergence rate of the PtP_es and PtP_pr algorithms for Stanford
Bunny. Fig. 2 shows the convergence rate of the PtP_es and PtP_pr algorithms for
Stanford Armadillo.
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АЛГОРИТМЫ РЕШЕНИЯ ЗАДАЧИ АБСОЛЮТНОЙ ОРИЕНТАЦИИ
ДЛЯ ГРУПП GL(3), O(3) И SO(3)
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Наиболее используемый алгоритм регистрации облаков точек в трёхмерном про-
странстве — итеративный алгоритм ближайших точек (ICP). Вариационная задача
типа point-to-point для ортогональных преобразований математически эквивалент-
на задаче абсолютной ориентации в фотограмметрии. В данной статье предлагается
обзор известных методов решения в замкнутой форме вариационной задачи point-
to-point. Здесь также получена новая модификация алгоритма Хорна для группы
SO(3). Компьютерное моделирование иллюстрирует разницу в точности работы рас-
сматриваемых методов.

Kлючевые слова: задача абсолютной ориентации, итерационный алгоритм ближай-
ших точек (ICP), point-to-point, решение в замкнутой форме, точное решение, ортогональное
преобразование, аффинное преобразование.
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